

IGCSE (EDEXCEL) Physics : Velocity and acceleration answers

Q1. (a) (i) (average) speed = distance (travelled) \div time (taken);
(ii) substitution OR rearrangement; evaluation;
e.g. $21 = \text{distance} / 0.14$ OR $s=v \times t$ (distance =) 2.9 (m)

(b) (i) force = mass \times acceleration;
(ii) substitution OR rearrangement; evaluation;
e.g. $7600 = 1200 \times a$ OR $a = F / m$ (a =) $(-)6.3$ (m/s^2)
(iii) substitution into $v^2 = u^2 + 2as$; rearrangement; evaluation;
e.g. $0^2 = 21^2 + [2 \times (-)6.3 \times \text{distance}]$ distance = $441 / 12.6$
distance = 35 (m)

Q2. (a) (i) substitution into $a = \Delta v / t$; evaluation to 3 or more s.f.;
e.g. acceleration = $(4.20 - 1.45) / 0.286$ (acceleration =) 9.62 (m/s^2)
(ii) idea that air resistance / friction also acts on ball; which opposes the ball's weight;
(iii) substitution into $v^2 = u^2 + 2 \times a \times s$;
rearrangement; evaluation;
e.g. $4.202 = 1.452 + (2 \times 9.6 \times s)$
 $s = (v^2 - u^2) / 2a$
(s =) 0.809 (m)

Q3. (a) (i) momentum = mass \times velocity;
(ii) $72 \times 13 = 936$;
(iii) substitution into given equation; correct evaluation;
correct answer: 3200 (N)
e.g. force = change in momentum \div time taken = $936 \div 0.29 = 3200$ (N)
(iv) B
A cannot be correct as increasing the force does not protect the driver
C cannot be correct as they would both increase the force on the person
D cannot be correct as the airbag decreases the momentum

Q4. substitution into $v^2 = u^2 + 2as$;
rearrangement; evaluation;
e.g. $v^2 = 0 + (2 \times 10 \times 18)$
 $v = \sqrt{360}$
(v =) 19 (m/s)

Q5. (a) use of $u=0$ (m/s);
correct substitution into ' $v^2 = u^2 + 2as$ '; correct evaluation of v^2 ;
correct evaluation of v ; correct answer = 160 (m/s)
e.g. $v^2 = u^2 + 2aS$
 $v^2 = 26000$
 $v = 161.245\dots$ (m/s)

(b) any THREE from:
MP1. reference to weight and air resistance;
MP2. air resistance larger than weight (when parachute opens);
MP3. reference to ' $F = ma$ ';
MP4. acceleration is upwards;
MP5. air resistance decreases as parachutist slows down;

Q6. (i) e.g. (a =) $(-14000 / 1900)$

$$(a =) (-7.4)$$

$$\text{m/s}^2$$

(ii) substitution into $v^2 = u^2 + 2as$;
rearrangement; evaluation;
e.g. $0 = 182 + (2 \times -7.4 \times s)$
(s =) $324 / (2 \times 7.4)$
(s =) 22 (m)

Q7.(a) any four from:

MP1. air resistance increases (greatly) when parachute is opened;
MP2. idea that air resistance is greater than weight;
MP3. (therefore) resultant force is upwards;
MP4. idea that as speed decreases, air resistance decreases;
MP5. resultant force (eventually) becomes zero;
MP6. constant speed achieved;

(b) attempted use of $v^2 = u^2 + (2 \times a \times s)$;

correct substitution;

rearrangement of formula / evaluation of v^2 ; evaluation of v;
e.g. $v^2 = u^2 + (2 \times a \times s)$; $v^2 = 0.452 + (2 \times 3.4 \times 2.0)$;
 $v = \sqrt{0.452 + (2 \times 3.4 \times 2.0)}$ OR $v^2 = 13.8$ (v =) 3.7 (m/s)

(c) any one from:

MP1. Mars has a smaller mass;

MP2. Mars has a lower density;

MP3. Mars has a smaller (iron rich) core;

Q8.(a) substitution into given equation $v^2 = u^2 + (2 \times a \times s)$;

evaluation of v^2 ;

evaluation of v to 3sf or more i.e. 16.1 (m/s);

e.g. $v^2 = u^2 + (2 \times a \times s)$ $v^2 = 0^2 + (2 \times 10 \times 13)$

$v^2 = 260$ $v^2 = \sqrt{260} = 16.1$ (m/s)

(b) any FIVE from:

MP1 ball has weight;

MP2 ball accelerates;

MP3 drag increases (while accelerating);

MP4 resultant force decreases;

MP5 (so) acceleration decreases;

MP6 drag = weight / resultant = 0 / forces balanced;

MP7 terminal velocity/constant speed /acceleration=0;

Q9. (i) acceleration = change in velocity / time;

(ii) substitution; rearrangement; evaluation;

e.g. $1.2 = (35 - 26) / t$

$$t = 9 / 1.2$$

$$(t =) 7.5 (\text{s})$$